solution was heated at 85-90 °C for a period of 2.5 h and then lyophilized to give crystalline crude alcohol which was recrystallized from EtOAc or acetone. Yields were generally in the range of 70-80%.

Data for trans S* alcohol 16a: mp 104–106 °C; IR (CH₂Cl₂) 2.71 and 2.87 (OH and NH), 5.65 (β -lactam and carbonate) 6.22 and 6.56 (nitro) μ m; NMR (CDCl₃) δ 1.47 (d, J = 6.5 Hz, CH₃), 1.9 (m, CH₂CH₂OH), 2.63 (br s, OH), 3.20 (dd, $J_{6,8} = 4$ Hz, $J_{5,6} = 2$ Hz, H₆), 3.7 (m, H₅ and CH₂CH₂OH), 5.20 (m, partially hidden, H₈), 5.30 (s, CH₂Ar), 6.70 (br s, NH), 7.60 (d, J = 8.5 Hz, two aromatic protons meta to nitro), 8.27 (d, J = 8.5 Hz, two aromatic protons ortho to nitro); mass spectrum (silylated), m/e 554 (M⁺, trisilyl), 482 (M⁺, disilyl), 467, 270, 136. Anal. (C₁₅H₁₈N₂O₇) C, H, N.

Data for trans R^* alcohol 16b: IR (CH₂Cl₂) 2.70 and 2.87 (OH and NH), 5.65 (β -lactam and carbonate), 6.20 and 6.55 (nitro) μ m; NMR (CDCl₃) δ 1.47 (d, J = 6.5 Hz, CH₃), 1.9 (m, CH₂CH₂OH), 2.23 (br s, OH), 3.10 (dd, $J_{6.8} = 7$ Hz, $J_{5.6} = 2$ Hz, H₆), 3.80 (m, H₅ and CH₂CH₂OH), 5.2 (m, partially hidden, H₈), 5.27 (s, CH₂Ar), 6.53 (br s, NH), 7.57 (d, J = 8.5 Hz, two aromatic protons meta to nitro), 8.27 (d, J = 8.5 Hz, two aromatic protons ortho to nitro); mass spectrum (silylated), m/e 555 [(M + 1)⁺, trisilyl],¹⁷ 483 [(M + 1)⁺, disilyl], 467, 270, 136.

Data for cis R^* alcohol 16c: mp 150–151 °C; IR (Nujol mull) 3.05, 5.69 (β -lactam), 5.74 (carbonate), 6.19 and 6.55 (nitro) μ m;

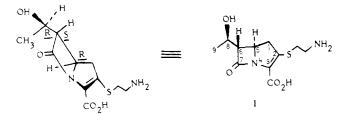
300-MHz NMR (Me₂CO-d₆) δ 1.43 (d, J = 6 Hz, CH₃), 1.9 (m, CH₂CH₂OH), 3.42 (dd, $J_{6,8} = J_{5,6} = 4.5$ Hz, H₆), 3.66 (dd, J = 10 and 6 Hz, CH₂CH₂OH), 3.89 (ddd, J = 10, 6, and 4.5 Hz, H₅), 5.16 (qd, J = 6 and 4.5 Hz), 5.38 (AB q, J = 13.5 Hz), 7.28 (br s, NH), 7.76 (d, J = 8 Hz, two aromatic protons meta to nitro), 8.32 (d, J = 8 Hz, two aromatic protons ortho to nitro); mass spectrum, m/e 339 [(M + 1)⁺],¹⁷ 265, 136. Anal. (C₁₅H₁₈N₂O₇) C, H, N.

Acknowledgment. We thank Mr. H. Flynn for recording the mass spectra and the 300-MHz NMR spectra and Dr. C. Shunk for synthetic support. F.A.B. thanks Drs. F. DiNinno and R. W. Ratcliffe for helpful discussions during the course of this work.

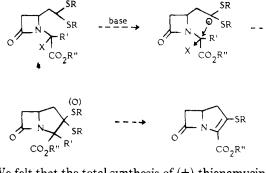
Registry No. 5, 1515-76-0; (*E*)-7, 67314-41-4; (*Z*)-7, 67314-40-3; 8, 67245-83-4; 9, 65750-47-2; 10, 65750-48-3; 11a, 72690-80-3; 11b, 72690-81-4; 11c, 65794-44-7; 11d, 65794-45-8; 12a, 65794-51-6; 12b, 65750-51-8; 13, 65750-49-4; 14, 65750-50-7; 15a, 65794-41-4; 15b, 65794-46-9; 15c, 72690-82-5; 15d, 72690-83-6; 16a, 65794-42-5; 16b, 65794-47-0; 16c, 72690-84-7.

Supplementary Material Available: Table containing the final fractional coordinates and thermal parameters for 15d (2 pages). Ordering information is given on any current masthead page.

Thienamycin Total Synthesis. 2. Model Studies—Synthesis of a Simple 2-(Alkylthio)carbapen-2-em


Susan M. Schmitt,* David B. R. Johnston, and B. G. Christensen

Merck Sharp & Dohme Research Laboratories, Rahway, New Jersey 07065


Received September 25, 1979

Model studies directed toward the total synthesis of (\pm) -thienamycin are described which have resulted in the preparation of the benzyl ester of (\pm) -2-(methylthio)carbapen-2-em-3-carboxylic acid (2). Azetidinone 3 was converted into thioenolether 24 via thioacetal 6. Bromination of 24 followed by treatment with base afforded the key bicyclic intermediate 25. Dehydrobromination, decarbalkoxylation, and isomerization of the double bond then yielded the desired model compound 2. The synthesis of carbapenams 19a,b (R = t-Bu and Bz) from azetidinone 11 is also described.

Thienamycin $(1)^1$ is a novel β -lactam antibiotic isolated from *Streptomyces cattleya*.² Its activity against *Pseu*-

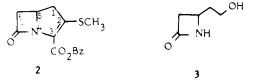
domonas spp. and its resistance to bacterial β -lactamases are of particular interest.² Even more intriguing to an organic chemist is the challenge presented by the total synthesis of such a highly functionalized and unusual ring system.³

Scheme I

(0)

We felt that the total synthesis of (\pm) -thienamycin could conveniently be divided into three major synthetic objectives: (1) preparation of an azetidinone suitably sub-

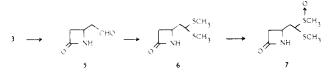
⁽³⁾ The numbering of the ring system adopted throughout this and the subsequent paper is based on assigning the terms carbapenam, carbapen-1-em, and carbapen-2-em to structures **a**, **b**, and **c**, respectively. This nomenclature is analogous to the penam and cepham nomenclature currently employed in β -lactam chemistry.


0022-3263/80/1945-1135\$01.00/0 © 1980 American Chemical Society

⁽¹⁾ G. Albers-Schönberg, B. H. Arison, O. D. Hensens, J. Hirshfield, K. Hoogsteen, E. A. Kaczka, R. E. Rhodes, J. S. Kahan, F. M. Kahan, R. W. Ratcliffe, E. Walton, L. J. Ruswinkle, R. B. Morin, and B. G. Christensen, J. Am. Chem. Soc., 100, 6491 (1978).

⁽²⁾ J. S. Kahan, F. M. Kahan, R. Goegelman, S. A. Currie, M. Jackson, E. O. Stapley, T. W. Miller, A. K. Miller, D. Hendlin, S. Mochales, S. Hernandez, H. B. Woodruff, and J. Birnbaum, J. Antibiot., 32, 1 (1978), and references therein.

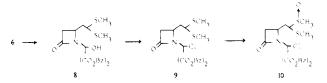
stituted at the C-4 position for subsequent elaboration of the second ring; (2) introduction of the hydroxyethyl side chain at the C-3 position; (3) elaboration of the resultant azetidinone to the properly functionalized carbapen-2-em.


The first two synthetic goals were accomplished as described in the preceding paper, part 1, of this series. While this chemistry was evolving, the methodology necessary to construct a 2-thioalkyl-substituted carbapen-2-em, a model system for thienamycin, was simultaneously developed. In this paper, we wish to describe the preparation of the benzyl ester of (\pm) -2-(methylthio)carbapen-2-em-3-carboxylic acid $(2)^3$ —a synthesis which, when coupled

with the chemistry of part 1, led directly to the total synthesis of (\pm) -thienamycin and (\pm) -8-epithienamycin as described in the following paper, part 3, of this series.⁴

With 4-(2-hydroxyethyl)-2-azetidinone (3)⁵ as a starting material, there are numerous conceivable methods to introduce the required functionalities and to ultimately construct the desired carbapenem. We chose to elaborate azetidinone 3 so that cyclization would entail C-2 to C-3 bond formation. That is, the original synthetic approach required the cyclization of a thioacetal or its monosulfoxide, 4 (X = Cl, R' = H), as depicted in Scheme I.⁶ If formation of the anion at the prospective C-2 position were followed by intramolecular alkylation, elimination of the alkylsulfenic acid would then give the desired carbapenem. Not unexpectedly, the incorporation of the necessary functionalities was an easy task in comparison to the difficulty encountered in closing to a bicyclic system.

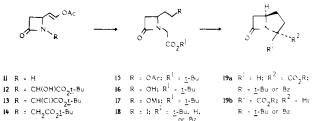
Oxidation of 3 with CrO_3 py in acetonitrile in the presence of Celite⁷ gave a solution of aldehyde 5 which was immediately treated with MeSH in the presence of $BF_3 \cdot Et_2O$ to give thioacetal 6. Treatment of 6 with NaIO₄



in aqueous MeOH provided monosulfoxide 7 as a mixture of diastereomers. With the Woodward methodology,⁸ such a thioacetal or its monosulfoxide could be condensed with a variety of glyoxylic esters to give hydroxyacetates 4 (X = OH, R' = H) which upon treatment with SOCl₂/pyridine gave the desired chloroacetates 4 (X = Cl, R' = H). All attempts to cyclize such chloroacetates gave discouragingly complex mixtures. These results were attributed at least in part to the presence of a number of other acidic protons in the molecule (namely, those α to the β -lactam carbonyl and geminal to the chlorine) which might have interfered with formation of the desired sulfur-stabilized anion. In

addition, the chloroacetates were unstable to chromatography and therefore of questionable purity.

An attractive variant of Scheme I involved establishment of a chloromalonate rather than a chloroacetate substituent at nitrogen, thus effectively blocking the proton geminal to the chlorine by replacing it with a second carboalkoxy group, (Scheme I, 4, X = Cl, $R' = CO_2 R''$). Subsequent to cyclization, a decarbalkoxylation followed by elimination of alkyl sulfide or sulfinate would then provide the desired carbapenem.


Thioacetal 6 could be condensed⁸ with a variety of ketomalonates, in particular with dibenzyl ketomalonate, in boiling toluene to give hydroxymalonate 8. Treatment

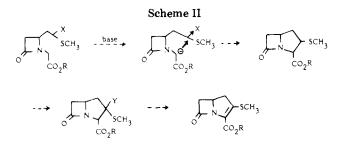
with $SOCl_2$ /pyridine in THF⁸ gave chloromalonate 9. Oxidation of 9 with *m*-chloroperbenzoic acid in Et_2O provided monosulfoxide 10. Although chloromalonates 9 and 10 could be purified by thin-layer chromatography and structurally contained one less potentially interfering proton, cyclizations of such systems (Scheme I, X = Cl, $\mathbf{R}' = \mathbf{CO}_2 \mathbf{R}''$) were also discouraging. Treatment with LDA or BuLi under a variety of reaction conditions generally resulted in the production of highly colored, complex mixtures yielding no isolable bicyclic materials.⁹

Reconsidering the proposed direction of cyclization, we investigated reversing the roles of the prospective C-2 and C-3 atoms by establishing a leaving group at the C-2 position and generating an anion at the C-3 position. The feasibility of such an approach was established by the preparation of carbapenams 19a,b in the following manner.

Condensation⁸ of enol acetate 11⁵ with tert-butyl glyoxylate¹⁰ in boiling toluene gave the diastereomeric carbinols 12. Treatment with $SOCl_2$ /pyridine in THF⁸ gave chloroacetate 13 which was immediately reduced with Zn in aqueous acetic acid⁸ to yield 14. Hydrogenation¹¹ of

14 in the presence of 5% Pd/C in EtOAc gave saturated acetate 15. Deacetylation¹¹ with NaOMe in MeOH provided alcohol 16. Treatment with mesyl chloride and Et₃N in CH₂Cl₂ gave mesylate 17 which was converted to iodo compound 18 ($R^1 = t$ -Bu) with NaI in acetone. Ring closure to carbapenams 19a,b (R = t-Bu) was accomplished by treating 18 with NaH in DMF at room temperature for 5 h. The 300-MHz proton NMR spectrum of 19a,b (R = t-Bu) indicated that the product was a mixture of diastereomers in approximately a 5:1 ratio.^{12,13} The C-3

⁽⁴⁾ The total synthesis of (\pm) -thien amycin has been briefly described by us in a communication: D. B. R. Johnston, S. M. Schmitt, F. A. Bouffard, and B. G. Christensen, J. Am. Chem. Soc., 100, 313 (1978).

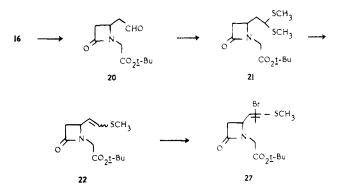

⁽⁵⁾ Prepared in part 1 of this series. (6) The synthetic utility of thioacetals and their monosulfoxides has (6) The synthetic utility of thioacetals and their monosulfoxides has been demonstrated by others: E. J. Corey and D. Seebach, J. Org. Chem., 31, 4097 (1966); K. Ogura and G. Tsuchihashi, Bull. Chem. Soc. Jpn., 45, 2203 (1972); J. E. Richman, J. L. Herrmann, and R. H. Schlessinger, Tetrahedron Lett., 3267 (1973); K. Ogura, M. Yamashita, S. Furukawa, M. Suzuki, and G. Tsuchihashi, *ibid.*, 2767 (1975).
(7) Procedure developed by Dr. J. Fahey.
(8) R. Scartazzini, H. Peter, H. Bickel, K. Heusler, and R. B. Woodward, Helv. Chim. Acta, 55, 408 (1972).

⁽⁹⁾ The isolation of low yields of the corresponding hydrogen malonates indicated the occurrence of some halogen-metal interconversion during these attempted cyclizations.

⁽¹⁰⁾ J. Blake, J. R. Tretter, G. J. Juhasz, W. Bonthrone, and H. Rapoport, J. Am. Chem. Soc., 88, 4061 (1966).
(11) Procedure developed in part 1 of this series.
(12) Minor peaks observable in the ¹³C NMR of 19a,b (R = t-Bu) also

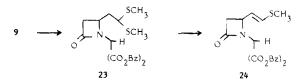
indicated the presence of the second diastereomer. See the Experimental Section.

⁽¹³⁾ All compounds are racemic.



proton of the major diastereomer (19a, R = t-Bu) appeared as a triplet at δ 4.30 (J = 8 Hz) while the C-3 proton of the minor diastereomer (19b, R = t-Bu) appeared as a triplet at δ 3.78 (J = 5 Hz). By analogy to related systems, the major diastereomer has been assigned the thermodynamically more stable configuration¹⁴ having the C-3 and C-5 protons trans to one another. The relative chemical shifts of the C-3 protons, as assigned above, are in accord with the trend previously observed by others for the C-3 protons of certain diastereomeric 1-oxapenams and penams.¹⁴

An attempt to deblock the 19a,b (R = t-Bu) mixture by briefly treating it with trifluoroacetic acid resulted in destruction of the β -lactam. Similar treatment of iodo precursor 18 ($R^1 = t$ -Bu), however, gave the expected free acid 18 ($R^1 = H$). Immediate reesterification with phenyldiazomethane provided 18 ($R^1 = Bz$). Cyclization as above gave carbapenams 19a,b (R = Bz) as a mixture of diastereomers similar to the mixture produced when R = t-Bu. Although a nonacidic deblocking procedure now could be applied, the free acid remained elusive. Catalytic hydrogenolyses of 19a.b (R = Bz) produced mixtures of decomposition products having little or no β -lactam-containing materials present although in one instance the crude product did exhibit some antibacterial activity. Probably the isolation of carbapenam-3-carboxylic acid (19a, b, R =H) is a difficult enterprise due to the compound's limited stability.


Returning to the primary synthetic objective, adaptation of the successful ring closure $(18 \rightarrow 19a,b)$ to a sulfursubstituted system required the cyclization of an α -halo sulfide as depicted in Scheme II. If anion generation were followed by intramolecular alkylation, a thioalkyl-substituted carbapenam would result. Conversion to the carbapen-2-em seemed possible since precedent exists for selective functionalization (e.g., chlorination,¹⁵ Y = Cl) at the more highly substituted position α to sulfur. Elimination of the elements HY would then yield the desired carbapen-2-em.

Since thioacetals have been cleaved with bromine to give α -bromo sulfides and the corresponding sulfenyl bromide,¹⁶ α -halo sulfides were, in principle, readily available to us. Oxidation of alcohol 16 as described previously for 3⁷ gave aldehyde 20. Treatment with MeSH in acetonitrile in the presence of BF₃·Et₂O gave thioacetal 21. Addition of 1 equiv of bromine to an ether solution of 21 at 25 °C¹⁶ quickly resulted, however, in complete destruction of the β -lactam. Since α -halo sulfides having β -hydrogens are known to eliminate hydrogen halide readily,¹⁷ a situation which may have compromised the β -lactam, a one-pot procedure was developed for generation of the α -bromo sulfide and subsequent cyclization. Treatment of an eth-

ereal solution of 21 with bromine at 0 °C was followed by addition of 1 equiv of cyclohexene to scavenge methanesulfenyl bromide. Addition of NaH and DMF to the resultant reaction mixture gave after 3 h at 0 °C an 89% yield of E and Z thioenolethers 22 rather than the desired carbapenam.

Expecting that the enhanced acidity of the malonate system might lead, under similar conditions, to cyclization rather than thioenolether formation, we reduced chloromalonate 9 with Zn in aqueous acetic acid⁸ to give malo-

nate 23. However, even in the presence of the malonate system, bromination and base treatment in the above manner resulted in elimination rather than cyclization, thus producing the E thioenolether 24 in 87% yield.

Only through further investigation into the synthetic possibilities presented by the availability of thioenolether 24 did a successful cyclization finally result. That is,

bromination of 24 in ether at 0 °C followed by exposure to NaH in DMF at room temperature gave bicyclic material 25 in 67% yield along with a 7% yield of elimination product 26. Exposure of thioenolether 22 to the same conditions proved futile, however; cyclization did not compete successfully with elimination, and a 92% yield of a mixture of bromo olefins 27 was produced, thus suggesting that the presence of the malonate system was essential to ensure a successful ring closure.

The bromo substituent on 25 provided a useful handle for the introduction of the required unsaturation and completion of the model work. Dehydrobromination of 25 with DBU in Me₂SO¹⁸ gave the unsaturated diester 28.¹⁹

$$25 \longrightarrow O \xrightarrow{N} SCH_3 \longrightarrow O \xrightarrow{N} SCH_3 \longrightarrow 2$$

Decarbalkoxylation was achieved by heating 28 in collidine at 120 °C in the presence of LiI^{20} for 30 min to give carbapen-1-em 29. Failure to observe any conjugated ester

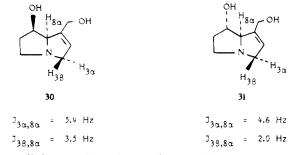
 ⁽¹⁴⁾ A. G. Brown, D. F. Corbett, and T. T. Howarth, J. Chem. Soc., Chem. Commun., 359 (1977), and references therein.
 (15) D. L. Tuleen and T. B. Stephens, J. Org. Chem., 34, 31 (1969).

⁽¹⁵⁾ D. L. Tuleen and T. B. Stephens, J. Org. Chem., 34, 31 (1969).
(16) M. L. Wolfrom, H. G. Garg, and D. Horton, J. Org. Chem., 29, 3280 (1964).

⁽¹⁷⁾ F. G. Bordwell and B. M. Pitt, J. Am. Chem. Soc., 77, 572 (1955).

⁽¹⁸⁾ H. Oediger and Fr. Möller, Angew. Chem., Int. Ed. Engl., 6, 76 (1967).

⁽¹⁹⁾ Dehydrobromination of 25 with AgF in pyridine was later found to provide 28 in even better yield. See the Experimental Section.
(20) J. McMurry, Org. React., 24, 187 (1976).


2 as a product of this decarbalkoxylation was somewhat surprising and will be discussed later. Partial isomerization of the double bond was accomplished by brief treatment of 29 with a slight excess of DBU in Me_2SO . After 15 min, thin-layer chromatography indicated the presence of starting material and a slightly more polar material. Although the new, more polar material was destroyed if an aqueous workup was used, preparative thin-layer chromatography of the entire reaction mixture afforded a 25% isolated yield of the elusive carbapen-2-em 2 as well as a 25% recovery of the starting carbapen-1-em 29.

As a result of the double-bond isomerization procedure developed above, determination of the stereochemistry at C-3 relative to C-5 in carbapen-1-em 29 became possible. The 60-MHz proton NMR of 29 suggested that only one pair of enantiomers was present since only one C-3 proton at δ 5.03 was observable, appearing as a doublet of doublets and exhibiting allylic $(J_{1,3} = 1.5 \text{ Hz})$ and homoallylic $(J_{3,5} = 3 \text{ Hz})$ coupling. When a chromatographically pure sample of carbapen-2-em 2 was reexposed to DBU in Me₂SO, the same mixture of Δ^1 and Δ^2 materials resulted as had been originally produced from carbapen-1-em 29. This indicated that the double bond isomerization was an equilibrium process as represented by eq $1.^{13}$ The car-

bapen-1-em produced in this manner was identical with 29 in all respects (IR, ¹H NMR, TLC). Since such equilibrium conditions should produce the thermodynamically more stable relative configuration at C-3,¹⁴ 29 was assigned the relative stereochemisty depicted in eq 1. This is the C-3 configuration natural to the penicillins²¹ and analogous to the C-4 configuration of Δ^2 -cephalosporins.²²

Additional evidence for the proposed stereochemical assignment was provided by comparison²³ of the homoallylic coupling constants observed in the pyrrolizidine alkaloids retronecine (30) and heliotridine $(31)^{24}$ with the

homoallylic coupling observed in 29. The couplings between the 3α and 8α protons of 30 and 31, 5.4 and 4.6 Hz, respectively, are much larger than the 3-Hz homoallylic coupling in 29.2^{5} On the other hand, the comparable size of the coupling between the 3β and 8α protons of **30** and 31, 3.5 and 2.0 Hz, respectively, suggests a similar stereochemical relationship exists between the C-3 and C-5 protons of 29.

That none of carbapen-2-em 2 had been produced during the decarbalkoxylation of diester 28 remained puzzling especially in light of the isolation from the reaction of the carbapen-1-em having the thermodynamically more stable C-3 configuration. It was at first suspected that any 2 produced might have been destroyed during the subsequent aqueous workup. As noted previously, the instability of 2 to a similar workup had been observed during our first attempts at double-bond isomerization. Thin-layer chromatography of the crude decarbalkoxylation reaction directly after removal of the collidine in vacuo, however, showed the absence of any carbapen-2-em 2. The carbapen-1-em 29 and starting diester 28 were, however, readily observable. It was subsequently discovered that 2 is unstable to the decarbalkoxylation conditions themselves, and complete destruction of the β -lactam results within the 30-min reaction time.

Although a one-step conversion of 28 to 2 was therefore not feasible under these conditions, with the development of the DBU-mediated double-bond isomerization of 29 to 2, we had completed the synthesis of a simple 2-(alkylthio)carbapen-2-em. The application of this methodology to the total synthesis of (\pm) -thienamycin and (\pm) -8-epithienamycin is described in part 3 of this series.

Experimental Section

General Methods. Pyridine was distilled from powdered KOH and Et₃N from NaOH. Collidine (sym) was distilled in vacuo from powdered KOH. DBU was distilled in vacuo. SOCl₂ was distilled just prior to use. BF3 Et2O was purified according to Fieser and Fieser.²⁶ THF was freshly distilled from LiAlH₄. Me₂SO was distilled in vacuo from CaH₂. DMF was stirred overnight with anhydrous CaSO₄ and distilled in vacuo. In instances where anhydrous conditions were required, solvents not mentioned above were sieve dried. CrO₃ was dried in vacuo over P₂O₅. LiI was similarly dried at 60-100 °C.

For analytical purposes, compounds were visualized on thinlayer chromatography (TLC) under UV light, by staining with I_2 , or by spraying with 1% ceric sulfate in 10% H_2SO_4 followed by charring using Analtech silica gel GF plates $(10 \times 2.5 \text{ cm})$. Preparative thin-layer chromatography (preparative TLC) was performed on 1000 µm Analtech silica gel GF plates. Products were visualized under UV light, and bands of interest were immediately scraped into the extracting solvent (EtOAc). Column chromatography was performed on Baker silica gel (60-200 mesh). Anhydrous $MgSO_4$ was used as a drying agent. Concentration, when indicated in the subsequent experiments, refers to concentration under a stream of N_2 followed by pumping under high vacuum without heating. As a general practice, β -lactams were refrigerated if stored for any length of time.

Melting points are uncorrected. Infrared spectra were recorded on a Perkin-Elmer Infracord Model 137. With Me₄Si as an internal standard, ¹H NMR spectra were recorded on a Varian T-60 spectrometer unless otherwise noted, in which case a Varian SC-300 spectrometer was used. Mass spectra were obtained on an LKB Model 9000 spectrometer. ¹³C NMR spectra were obtained on Varian CFT-20 and XL-100A spectrometers, and chemical shifts are reported in parts per million downfield from Me₄Si. All reported elemental analyses are within $\pm 0.4\%$ of the calculated values.

4-(2,2-Bis(methylthio)ethyl)-2-azetidinone (6) via 4-(2-Oxoethyl)-2-azetidinone (5). Chromium trioxide (2.77 g, 27.7 mmol) was added with stirring to a solution of pyridine (4.47 mL, 56 mmol) in 430 mL of CH₃CN. The flask was stoppered with a drying tube containing Drierite, and stirring was continued for 15 min. Celite (14 g) was added to the stirred orange-red solution,

⁽²¹⁾ D. Crowfoot, C. W. Bunn, B. W. Rogers-Low, and A. Turner-Jones in "The Chemistry of Penicillin", H. T. Clarke, J. R. Johnston, and R. Robinson, Eds., Princeton University Press, Princeton, NJ, 1949, p 310. (22) E. Van Heyningen and L. K. Ahern, J. Med. Chem., 11, 933 (1968).

⁽²³⁾ Comparison suggested by Dr. R. Ratcliffe.

 ⁽²⁴⁾ C. C. J. Culvenor, M. L. Heffernan, and W. G. Woods, Aust. J. Chem., 18, 1605 (1965).
 (25) The authors of ref 24 have attributed these unusually large ho-

moallylic couplings to the additivity of the π -orbital, homoallylic interaction with a direct cross-ring interaction between the 3α and 8α protons. The additional effect of the long-range coupling is due to the particular arrangement in space of the 3α and 8α protons.

⁽²⁶⁾ M. Fieser and L. Fieser, "Reagents for Organic Synthesis", Vol. 1, Wiley, New York, 1967, p 70.

followed in a few minutes by a solution of 4-(2-hydroxyethyl)-2-azetidinone (3; 2 g, 17.4 mmol) in 60 mL of CH₃CN. After 30 min, NaHSO₃ (6.9 g, 66.3 mmol) was added, and stirring was continued for an additional 5 min. Filtration of the reaction mixture through a bed of silica gel and anhydrous $MgSO_4$ (80 g, 1:1), followed by thorough washing of the filter bed with CH_3CN $(6 \times 50 \text{ mL})$, gave a dark filtrate which was concentrated under a stream of N_2 to a volume of ca. 120 mL. With stirring at 0 °C, the filtrate containing crude 5 was treated with MeSH (ca. 90 mL, 1.63 mmol, condensed in a dry ice/acetone chilled flask and decanted from precipitated impurities) followed by BF₃·Et₂O (5.9 mL, 46.7 mmol). After stirring for 2 h at 0 °C under N_2 , the reaction mixture was poured into a vigorously stirred cold mixture of K₂HPO₄ (50.5 g, 290 mmol), H₂O, and Et₂O. After phase separation, the aqueous layer was reextracted with Et_2O (3×). The combined organic layers were washed with brine, dried, filtered, and concentrated to give 1.6 g of crude 6. Chromatography on silica gel (50 g, eluting with 0-5% EtOAc/CHCl₃) gave 1.49 g of off-white crystals. Slurrying in a few milliliters of Et_2O , followed by filtration, gave 1.29 g of $\mathbf{6}$ (40%) as a white crystalline material. Recrystallization from Et₂O gave an analytical sample: mp 70-73 °C; IR (CHCl₃) 5.69 μm; NMR (CDCl₃) δ 2.12 (s and $\begin{array}{l} \text{mp fo} -73 & \text{c, fit (Critera) State for the fit of the$

4-[2-(Methylsulfinyl)-2-(methylthio)ethyl]-2-azetidinone (7). A solution of NaIO₄ (239 mg, 1.12 mmol) in 2 mL of H_2O was added dropwise to a stirred solution of 6 (200 mg, 1.05 mmol) in 8 mL of MeOH at 0 °C. After being stirred under N_2 for 4 h at room temperature, the reaction mixture was filtered. The solids were washed one time with MeOH (8 mL) and then repeatedly with CH₂Cl₂. The filtrate was concentrated to give 241 mg of crude 7. Chromatography on silica gel (12 g, eluting with 0-4% MeOH/CHCl₃) provided 199 mg of 7 (92%) as a mixture of diastereomeric sulfoxides: IR (CHCl₃) 5.69 μ m; NMR (300 MHz, CDCl₃) & 1.76-2.64 (m, side chain methylenes), 2.20 and 2.21 (2 s, CH₃S of two major diastereomers), 2.32 and 2.33 (2 s, CH₃S of two minor diastereomers), 2.58 and 2.60 (2 s, CH₃S=O of two minor diastereomers), 2.72-2.82 (partially buried m, H₃'s trans to H₄'s), 2.77 and 2.78 (2 s, CH₃S=O of two major diastereomers), 3.16-3.27 (m, H₃'s cis to H₄'s), 3.48-3.70 (m, SCHS=O), 3.87-4.02 (m, H₄'s), 6.28-6.70 (br, NH's); mass spectrum, m/e 143 (loss of methanesulfenic acid), 100.

Dibenzyl 2-[2,2-Bis(methylthio)ethyl]-a-hydroxy-4-oxo-1-azetidinemalonate (8). A freshly prepared solution of phenyldiazomethane (prepared from 6.5 g of azibenzil²⁷) in 150 mL of Et₂O was added with stirring to a solution of oxomalonic acid monohydrate (1.0 g, 7.35 mmol) in 50 mL of EtOAc at 0 °C. After 2.5 h the yellow solution was concentrated with mild heating on a rotary evaporator to half the volume, dried over anhydrous Na₂SO₄, filtered, and concentrated as above to a yellow oil. To this crude dibenzyl ketomalonate in 50 mL of toluene was added 6 (1.29 g, 6.75 mmol). The solution was heated in an oil bath until a third of the toluene had boiled off. The toluene was replaced and the azeo drying process repeated three more times. The solution was then allowed to reflux under N2 for 2 h. Concentration then provided 5 g of crude 8. TLC (10% $EtOAc/CHCl_3$) indicated the presence of a less polar product (R_t ca. 0.54), starting material (R_f ca. 0.29), and materials derived from the excess crude dibenzyl ketomalonate. Column chromatography on silica gel (150 g, eluting with 0-1% EtOAc/CHCl₃) gave a waxy white solid. Slurrying in a few milliliters of Et₂O followed by filtration provided 1.32 g of 8 as a white crystalline material. Preparative TLC (10% EtOAc/CHCl₃) of the filtrate from above and column fractions still contaminated with impurities gave material which upon Et₂O treatment as above provided 0.24 g of additional 8 (47%). Recrystallization from Et₂O gave an analytical sample: mp 93-95 °Č; IR (CCl₄) 5.70 μm; NMR (CDCl₃) δ 2.06 (2 s, SCH₃'s), 2.18 (m, side chain CH₂), 2.65 (dd, $J_{gem} = 15$ Hz, $J_{trans} = 3$ Hz, H₃), 3.16 (dd, $J_{gem} = 15$ Hz, $J_{cis} = 5$ Hz, H₃), 3.62 (t, J = 8 Hz, SCHS), 4.44 (m, β -lactam methine proton), 4.97 (s, OH), 5.16 and 5.20 $(2 \text{ s}, CH_2Ph's), 7.28 \text{ (br s}, Ph's); mass spectrum, <math>m/e 489 \text{ (M}^+),$ 442, 354. Anal. $(C_{24}H_{27}NO_6S_2)$ C, H, N, S.

Dibenzyl 2-[2,2-Bis(methylthio)ethyl]-4-oxo-1-azetidinemalonate (23) via Chloromalonate 9. Thionyl chloride (438 mg, 3.68 mmol) in 1 mL of THF was added dropwise to a stirred solution of 8 (1.5 g, 3.07 mmol) and pyridine (0.3 mL, 3.73 mmol) in 35 mL of THF at -20 °C. The reaction mixture was stirred under N₂ for 5 min at -20 °C, 0.5 h at 0 °C, and finally 1 h at 25 °C. Under N₂, the pyridine hydrochloride was filtered off and washed twice with benzene. The combined filtrate and washings were concentrated to a yellow oil with a small amount of pyridine hydrochloride still present. The oil was dissolved in a small volume of benzene, dried, filtered under N2, and concentrated to provide crude chloromalonate 9 as a clear yellow oil. The crude chloromalonate was placed in an ice bath, and 50 mL cold 9:1 $HOAc/H_2O$ was added. With swirling, Zn powder (2.1 g, 32.1 mmol) was immediately added. The reaction mixture was stirred vigorously for 15 min at 0 °C, followed by 30 min at room temperature. The inorganics were filtered and washed well with CH₂Cl₂. The combined filtrate and washings were concentrated to a yellow oil which was partitioned between CH₂Cl₂ and brine. After phase separation, the aqueous layer was reextracted with CH₂Cl₂. The combined organic layers were dried, filtered, and concentrated to give 1.5 g of crude 23. Chromatography on silica gel (75 g, 100% CHCl₃) gave 876 mg of 23 as an oil. Preparative TLC (10% EtOAc/CHCl₃) of column fractions which were still impure provided 295 mg of additional 23 (81%): IR (CCl₄) 5.69 μ m (br); NMR (CDCl₃) δ 1.99 and 2.03 (2 s, SCH₃'s), 2.07 (m, side chain CH₂), 2.68 (dd, $J_{gem} = 15$ Hz, $J_{trans} = 3$ Hz, H_3), 3.17 (dd, $J_{gem} = 15$ Hz, $J_{cis} = 5$ Hz, H_3), 3.52 (dd, J = 7.5 and 7 Hz, SCHS), 4.23 (m, β -lactam methine proton), 5.19 (br s, CH₂Ph's), 5.27 (s, $CH(CO_2CH_2Ph)_2$, 7.30 (br s, Ph's); mass spectrum, m/e 473 (M⁺), 427, 382, 378.

Isolation of Dibenzyl 2-[2,2-Bis(methylthio)ethyl]- α chloro-4-oxo-1-azetidinemalonate (9). The conversion of 8 (88 mg, 0.18 mmol) to 9 was performed as described above. Immediate preparative TLC (30% acetone/hexane) of the benzene solution containing the crude chloromalonate provided 52 mg of 9 (57%) as an oil: IR (CCl₄) 5.62, 5.69 μ m; NMR (CDCl₃) δ 2.07 and 2.08 (2 s, SCH₃'s), 1.90–2.67 (m, side chain CH₂), 2.70 (dd, $J_{gem} = 14$ Hz, $J_{trans} = 3$ Hz, H₃), 3.21 (dd, $J_{gem} = 14$ Hz, $J_{cis} = 5$ Hz, H₃), 3.59 (dd, J = 8 and 6 Hz, SCHS), 4.56 (m, β -lactam methine proton), 5.17 (s, CH₂Ph's), 7.22 (br s, Ph's).

Dibenzyl α-Chloro-2-[2-(methylsulfinyl)-2-(methylthio)ethyl]-4-oxo-1-azetidinemalonate (10). A solution of mchloroperbenzoic acid (22.7 mg, 85% purity, 0.11 mmol) in 1.5 mL of Et₂O was added dropwise to a stirred solution of 9 (50 mg, 0.099 mmol) in 1.5 mL of Et₂O at -78 °C. Upon completion of the addition, the reaction mixture was stirred under N_2 at -78 °C for 5 min and then at room temperature for 2 h. The colorless solution was then cooled to 0 °C, and an excess of diazomethane in ether was added, thus facilitating the subsequent chromatographic purification by converting *m*-chlorobenzoic acid into its less polar methyl ester. After 5 min at 0 °C, the reaction mixture was concentrated. The residue was dissolved in CHCl₃, and preparative TLC (50% acetone/hexane) provided 33 mg of 10 (63%) as an oil: IR (CCl₄) 5.61, 5.69 μm; NMR (CDCl₃) δ 2.19 (s, SCH₃), 2.61 (m, side chain CH₂), 2.71 (s, CH₃S=O), 2.75 (dd, partially buried, $J_{gem} = 14 \text{ Hz}$, $J_{trens} = 3 \text{ Hz}$, H_3), 3.25 (dd, $J_{gem} = 14 \text{ Hz}$, $J_{cis} = 5 \text{ Hz}$, H_3), 3.35 (t, J = 7 Hz, SCHS=O), 4.75 (m, β -lactam methine proton), 5.22 (s, CH₂Ph's), 7.28 (br s, Ph's).

tert-Butyl 2-(2-Acetoxyvinyl)- α -hydroxy-4-oxo-1-azetidineacetate (12). A solution of crude tert-butyl glyoxylate¹⁰ (2.0 g, 15.4 mmol) in 25 mL of toluene was dried by distilling off some of the toluene (ca. 5 mL). Additional toluene (5 mL) and 4-(2-acetoxyvinyl)-2-azetidinone (11,⁵ 1.0 g, 6.45 mmol) were added. After the distillation of 5 mL of toluene, refluxing under N₂ was continued for 2 h. Concentration of the reaction mixture provided crude 12. TLC (20% EtOAc/CHCl₃) indicated the presence of a new material with an R_f between those of 11 and tert-butyl glyoxylate. Dry column chromatography on silica gel H (according to Stahl, Type 60, EM Reagents) (300 g, eluting with 20% Et-OAc/CHCl₃) provided 1.2 g of 12 (65%) as a mixture of diastereomeric carbinols: NMR (CDCl₃) & 1.48 and 1.53 (2 s, tert-butyls), 2.10 and 2.15 (2 s, OAc's), 2.70 and 2.73 (2 dd, both having J_{gem} = 15 Hz, J_{trans} = 2 Hz, H₃'s), 3.25 (dd, J_{gem} = 15 Hz, J_{cis} = 5 Hz, H₃'s), 4.27 (m, β -lactam methine proton and OH's), 5.07 and 5.28

⁽²⁷⁾ P. Yates and B. L. Shapiro, J. Org. Chem., 23, 759 (1958).

(2 br d partially buried, CHOH's), 5.33 and 5.55 (2 dd, J = 10 and 8 Hz, J = 10 and 7 Hz, CH=CHOAc's), 7.38 and 7.40 (2 d, both having J = 10 Hz, CH=CHOAc's).

tert-Butyl 2-(2-Acetoxyvinyl)-4-oxo-1-azetidineacetate (14) via tert-Butyl 2-(2-Acetoxyvinyl)-a-chloro-4-oxo-1-azetidineacetate (13). A toluene solution of crude carbinol 12 [prepared as above from 11 (5 g, 32.3 mmol) and tert-butyl glyoxvlate (7.42 g, 57.1 mmol)] was dried, filtered, and concentrated under a stream of N_2 . The residue was dissolved in 150 mL of THF and cooled to -20 °C under N_2 . With stirring, pyridine (2.9 mL, 36 mmol) was added followed by the dropwise addition of SOCl₂ (2.58 mL, 35.5 mmol) in 3 mL of THF. The reaction mixture was stirred for 5 min at -20 °C, for 0.5 h at 0 °C, and finally for 1 h at room temperature. After workup (as in the preparation of crude 9), crude chloroacetate 13 was dissolved in 15 mL of THF. The solution was added to a stirred mixture of Zn powder (101 g, 1.55 mmol) in 150 mL of cold 9:1 HOAc/H₂O. The reaction mixture was vigorously stirred for 15 min at 0 °C followed by 45 min at room temperature. Workup (as in the preparation of crude 23) gave 8.6 g of crude 14. Chromatography on silica gel (270 g, eluting with CHCl₃) provided 6.64 g of 14 (76%) as a white solid. Recrystallization from Et₂O gave an analytical sample: mp 82-85 °Č; IR (CCl₄) 5.67, 5.75 µm; NMR (CDCl₃) sample: Inf 02 bit, At (CO14) 5.10, 5.10 μ m, Ather (CD 243) δ 1.48 (s, tert-butyl), 2.13 (s, OAc), 2.72 (dd, $J_{gem} = 15$ Hz, $J_{trans} = 2$ Hz, H_3), 3.28 (dd, $J_{gem} = 15$ Hz, $J_{cis} = 5$ Hz, H_3), 3.77 (midpoint of 2 d, J = 18 Hz, CH₂CO₂-t-Bu), 4.25 (m, β -lactam methine proton), 5.40 (dd, J = 12 and 10 Hz, CH=CHOAc), 7.37 (d, J = 12 Hz, CH=CHOAc). Anal. $(C_{13}H_{19}NO_5)$ C, H, N.

tert-Butyl 2-(2-Acetoxyethyl)-4-oxo-1-azetidineacetate (15). A solution of 14 (6.02 g, 22.4 mmol) in 120 mL of EtOAc was hydrogenated in the presence of 5% Pd/C (750 mg) on a Parr shaker for 1.5 h under 45 psi of H₂. The reaction mixture was filtered through Celite which was washed well with additional EtOAc. Concentration of the filtrate provided 5.96 g of 15 (98%) as a white crystalline solid. Recrystallization from Et₂O/petroleum ether gave an analytical sample: mp 39-40 °C; IR (CCl₄) 5.66, 5.73 μ m; NMR (CDCl₃) δ 1.48 (s, tert-butyl), 2.05 (s, OAc), 1.70-2.37 (m, CH₂CH₂OAc), 2.68 (dd, J_{gem} = 15 Hz, J_{trans} = 2.5 Hz, H₃), 3.18 (dd, J_{gem} = 15 Hz, J_{cis} = 5 Hz, H₃), 3.87 (midpoint of 2 d, J = 18 Hz, CH₂CO₂-t-Bu), 3.93 (partially buried m, β -lactam methine proton), 4.13 (t, J = 6 Hz, CH₂OAc); mass spectrum, m/e 271 (M⁺), 243, 215, 198. Anal. (C₁₃H₂₁NO₅) C, H, N.

tert-Butyl 2-(2-Hydroxyethyl)-4-oxo-1-azetidineacetate (16). To a solution of 15 (5.59 g, 20.6 mmol) in 50 mL of MeOH at 0 °C under N_2 with stirring was added NaOMe in MeOH (6.1 mL of 0.92 M NaOMe, 5.6 mmol). After being stirred for 1 h at 0 °C, the reaction was quenced with glacial $CH_{3}CO_{2}H$ (1 mL) and concentrated. The residue was partitioned between CH₂Cl₂ and H₂O. After phase separation, the aqueous layer was reextracted with CH_2Cl_2 (2×). The combined organic layers were washed with brine, dried, filtered, and concentrated to give 4.5 g of crude 16. Chromatography on silica gel (130 g, eluting with 0-2.5% MeOH/CHCl₃) provided 3.64 g of 16 (76%) as an oil: IR (CCl₄) 5.70, 5.77 μm; NMR (CDCl₃) δ 1.40 (s, tert-butyl), 1.68-2.10 (m, $\begin{array}{l} \textbf{CH}_2\textbf{CH}_2\textbf{OH}, \ 2.13 \ (br \ t, \ J=4 \ Hz, \ \textbf{OH}), \ 2.65 \ (d, \ J_{gem}=15 \ Hz, \ J_{trans}=2.5 \ Hz, \ H_3), \ 3.13 \ (dd, \ J_{gem}=15 \ Hz, \ J_{cis}=5 \ Hz, \ H_3), \ 3.75 \ (br \ m, \ \textbf{CH}_2\textbf{CH}_2\textbf{OH}), \ 3.88 \ (midpoint \ of \ 2 \ d, \ J=18 \ Hz, \ J_{zem}=18 \ Hz, \$ CH_2CO_2 -t-Bu) [β -lactam methine proton buried in $CH_2OH/$ CH_2CO_2 -t-Bu area; addition of D_2O causes the following changes: disappearance of br t at 2.13 (OH), 3.65 (sharp t, J = 6 Hz, CH₂OH), 3.82 (partially buried m, β -lactam methine proton)]; mass spectrum, m/e 229 (M⁺), 201, 173, 128.

tert-Butyl 2-[2-[(Methanesulfonyl)oxy]ethyl]-4-oxo-1azetidineacetate (17). To 16 (210 mg, 0.92 mmol) in 3 mL of CH₂Cl₂ with stirring at 0 °C under N₂ was added Et₃N (0.14 mL, 1 mmol) followed by a solution of MsCl (114 mg, 1 mmol) in 1.1 mL of CH₂Cl₂. The reaction mixture was stirred at 0 °C for 1 h and then poured into a mixture of 1 M K₂HPO₄ (1 mL), H₂O, and CH₂Cl₂. After phase separation, the aqueous layer was reextracted with CH₂Cl₂. The combined organic layers were washed with H₂O, dried, filtered, and concentrated to give 278 mg of crude 17. Column chromatography on silica gel (10 g, eluting with CHCl₃) provided 264 mg of 17 (94%) as an oil: IR (CCl₄) 5.64, 5.73 μ m; NMR (CDCl₃) δ 1.48 (s, tert-butyl), 2.17 (m, CH₂CH₂OMs), 2.72 (dd, J_{gem} = 14 Hz, J_{trans} = 3 Hz, H₃), 3.03 (s, SO₂CH₃), 3.25 (dd, J_{gem} = 14 Hz, J_{cis} = 5 Hz, H₃), 3.90 (midpoint of 2 d, J = 18 Hz, CH₂CO-*t*-Bu), 3.83–4.08 (m, β -lactam methine proton), 4.32 (t, J = 6 Hz, CH₂OMs); mass spectrum, m/e 307 (M⁺), 251, 206.

tert-Butyl 2-(2-Iodoethyl)-4-oxo-1-azetidineacetate (18). A mixture of 17 (75 mg, 0.244 mmol) and NaI (85 mg, 0.57 mmol) in 2 mL of acetone was stirred under N_2 at room temperature for 15 h. The reaction was filtered, and the insoluble materials were washed well with CH₂Cl₂. The combined filtrate and washings were concentrated, and the residue was partitioned between CH_2Cl_2 and H_2O . After phase separation, the aqueous layer was reextracted with CH₂Cl₂. The combined organic layers were washed with 5% $Na_2S_2O_3$ and then with brine. The organic layer was dried, filtered, and concentrated to give 78 mg of crude 18. Preparative TLC (15% EtOAc/CHCl₃) provided 71 mg of tertbutyl ester 18 (86%) as a white crystalline solid. Recrystallization from hexane gave an analytical sample: mp 67-68 °C; IR (CCl₄) 5.65, 5.73 μm; NMR (CDCl₃) δ 1.50 (s, tert-butyl), 1.88-2.60 (m, CH₂CH₂I), 2.68 (dd, $J_{gem} = 15$ Hz, $J_{trans} = 3$ Hz, H₃), 3.17 (t, J = 7 Hz, CH₂I), 3.22 (dd, $J_{gem} = 15$ Hz, $J_{cis} = 5$ Hz, H₃), 3.88 (midpoint of 2 d, J = 18 Hz, CH₂CO₂-t-Bu), 3.77-4.10 (m, β -lactam methine proton); mass spectrum, m/e 339 (M⁺), 283, 238. Anal. (C₁₁H₁₈NIO₃) C, H, N.

tert-Butyl Carbapenam-3-carboxylate (19a,b). Sodium hydride (57% in mineral oil, 10.6 mg, 0.25 mmol) was slurried in 1 mL of petroleum ether and centrifuged, and the supernatant was pipetted off. A solution of tert-butyl ester 18 (66 mg, 0.19 mmol) in 0.5 mL of DMF was added to the above oil-free NaH. With stirring under N_2 at room temperature, a gentle gas evolution was initially observed. After 15-20 min, gas evolution had ceased. The reaction mixture was diluted with 1.5 mL of additional DMF and allowed to stir under N_2 for a total of 5 h. The reaction mixture was then added with stirring to a mixture of 1 M KH₂PO₄ (0.3 mL), CH₂Cl₂, and H₂O. After phase separation, the aqueous layer was extracted repeatedly with CH2Cl2. The combined organic layers were washed with brine, dried, filtered, and concentrated to give 34 mg of crude 19a,b. Preparative TLC (20% EtOAc/CHCl₃) yielded, upon extraction of a band traveling just ahead of the starting iodide, 21 mg of tert-butyl ester 19a,b (53%) as an oil: IR (CCl₄) 5.65, 5.77 μm; NMR (300 MHz, CDCl₃) δ 1.44 (s, *tert*-butyl), 2.04–2.36 and 2.48–2.58 (m, protons at C₁ and C₂), 2.62 (dd, $J_{gem} = 16$ Hz, $J_{trans} = 2$ Hz, H₆), 3.28 (dd, $J_{gem} = 16$ Hz, $J_{cis} = 5$ Hz, H₆), 3.84–3.91 (m, H₅), 4.30 (t, J = 8 Hz, H₃); peaks unique to minor diastereomer δ 1.48 (s, *tert*-butyl), 2.76 (dd, $J_{gem} = 16 \text{ Hz}$, $J_{trans} = 2 \text{ Hz}$, H_6), 3.10 (ddd, $J_{gem} = 16 \text{ Hz}$, $J_{cis} = 4.5 \text{ Hz}$, $J_{1,6} = 1 \text{ Hz}$, H_6), 3.64–3.72 (m, H_5), 3.78 (t, J = 5 Hz, H_3); ¹³C NMR (CDCl₃) 27.9 (q, C(CH₃)₃), 31.1 (t, C₂), 35.8 (t, C₁), 42.5 (t, C₆), 53.1 (d, C₅), 59.7 (d, C₃), 81.7 (C(CH₃)₃), 170.8 and 176.5 ppm $(\beta$ -lactam and ester C=O's); peaks attributable to minor diastereomer at 29.5 (C₂), 37.0 (C₁), 41.3 (C₆), 60.7 (C₃); mass spectrum, m/e 211 (M⁺), 155, 110.

Benzyl Ester 18. Freshly distilled CF_3CO_2H (0.54 mL) was added to tert-butyl ester 18 (76 mg, 0.224 mmol). The reaction was stoppered and stirred at room temperature. After 7 min, the solution was quickly concentrated to a colorless oil which was repeatedly dissolved in a small amount of CH₃CN and reconcentrated in order to remove any residual CF₃CO₂H. The residue was then dissolved in 0.5 mL of CH₃CN. With stirring, an Et₂O solution of phenyldiazomethane²⁷ (ca. 0.84 mmol) was added, causing an immediate, vigorous gas evolution. After stirring under N_2 for 20 min, the orange solution was concentrated to give 108 mg of crude benzyl ester 18. Preparative TLC (15% EtOAc/ $CHCl_3$) provided 66 mg of benzyl ester 18 (79%) as an oil: IR (CCl₄) 5.66, 5.73 (sh) μm; NMR (CDCl₃) δ 1.93-2.38 (m, CH₂CH₂I), 2.63 (dd, $J_{gem} = 14 \text{ Hz}$, $J_{trans} = 3 \text{ Hz}$, H_3), 3.10 (t, J = 7 Hz, CH_2 I), 3.17 (dd, $J_{gem} = 14 \text{ Hz}$, $J_{cis} = 5 \text{ Hz}$, H_3), 3.83 (m, β -lactam methine proton), 4.02 (midpoint of 2 d, J = 18 Hz, $CH_2CO_2CH_2Ph$), 5.17 (s, CH₂Ph), 7.33 (s, Ph); mass spectrum, m/e 373 (M⁺), 331, 282, 238

Benzyl Ester 19a,b. Sodium hydride (57% in mineral oil, 12.8 mg, 0.304 mmol) was slurried in 1 mL of petroleum ether and centrifuged, and the supernatant was pipetted off. A solution of benzyl ester 18 (75 mg, 0.201 mmol) in 2 mL of DMF was added to the above oil-free NaH. The reaction mixture was stirred at room temperature under N₂ for 5 h and then added to a stirred mixture of 1 M KH₂PO₄ (0.36 mL), CH₂Cl₂, and H₂O. After phase separation, the aqueous layer was extracted with EtOAc (2×).

Each organic layer was washed with brine. The combined organic layers were dried, filtered, and concentrated to give 44 mg of crude **19a,b**. Preparative TLC (15% EtOAc/CHCl₃) yielded, upon extraction of a band which was faintly observable under UV light and traveled just ahead of the starting iodide, 31 mg of benzyl ester **19a,b** (63%) as an oil: IR (CCl₄) 5.64, 5.74 μ m; NMR (300 MHz, CDCl₃) δ 2.08–2.38 and 2.52–2.64 (m, protons at C₁ and C₂), 2.64 (dd, $J_{gem} = 16$ Hz, $J_{trans} = 2$ Hz, H₆), 3.30 (dd, $J_{gem} = 16$ Hz, $J_{cis} = 5$ Hz, H₆), 3.85–3.92 (m, H₅), 4.46 (t, J = 7 Hz, H₃), 5.16 (s, CH₂Ph), 7.36 (s, Ph); peaks unique to minor diastereomer δ 2.77 (dd, $J_{gem} = 16$ Hz, $J_{trans} = 2$ Hz, H₆), 3.13 (dd, $J_{gem} = 16$ Hz, H_{3}), 5.19 (s, CH₂Ph), 7.38 (s, Ph); mass spectrum, m/e 245 (M⁺), 217, 203, 110.

tert-Butyl 2-Oxo-4-(2-oxoethyl)-1-azetidineacetate (20). Alcohol 16 (950 mg, 4.15 mmol) was oxidized by the same procedure used to oxidize alcohol 3 above. The dark brown oxidation mixture was filtered through a bed of Celite and silica gel (20 g, 1:1) followed by thorough washing of the filter bed with CH₃CN (5 × 50 mL). The dark brown filtrate was concentrated to a brown oil. Chromatography on silica gel (30 g, eluting with 0-5% MeOH/CHCl₃) gave 515 mg of 20 (55%) as a white solid. Approximately 400 mg of starting material was subsequently eluted from the column. Recrystallization of 20 from Et₂O gave an analytical sample: mp 47-50 °C; IR (CCl₄) 5.68, 5.77 μ m; NMR (CDCl₃) δ 1.45 (s, tert-butyl), 2.62 (dd, J_{gem} = 15 Hz, J_{trans} = 2 Hz, H₃), 2.95 (m, side chain CH₂), 3.20 (dd, J_{gem} = 15 Hz, J_{cis} = 5 Hz, H₃), 3.87 (s, CH₂CO₂-t-Bu), 4.14 (m, H₄), 9.79 (s, CHO). Anal. (C₁₁H₁₇NO₄) C, H, N.

tert-Butyl 2-[2,2-Bis(methylthio)ethyl]-4-oxo-1-azetidineacetate (21). To 20 (150 mg, 0.66 mmol) in 6 mL of CH₃CN with stirring at 0 °C under N₂ was added MeSH (ca. 3 mL, 54.3 mmol) followed immediately by BF₃:Et₂O (200 μ L, 1.58 mmol). After being stirred at 0 °C for 1.5 h, the reaction mixture was poured into a stirred cold mixture of 1 M K₂HPO₄ (10.5 mL), Et₂O, and H₂O. After phase separation, the aqueous layer was reextracted with Et₂O (2×). The combined organic layers were washed with brine, dried, filtered, and concentrated to give 185 mg of crude 21. Preparative TLC (20% EtOAc/CHCl₃) provided 174 mg of 21 (86%) as an oil: IR (CCl₄) 5.67, 5.76 μ m; NMR (CDCl₃) δ 1.49 (s, tert-butyl), 2.09 (s, SCH₃'s), 2.15 (m, side chain CH₂), 2.63 (dd, $J_{gem} = 14$ Hz, $J_{trans} = 2$ Hz, H₃), 3.17 (dd, $J_{gem} = 14$ Hz, $J_{cis} = 5$ Hz, H₃), 3.63 (t. J = 7 Hz, SCHS), 3.83 (midpoint of 2 d, J = 18Hz, CH₂CO₂-t-Bu), 4.00 (m, β -lactam methine proton); mass spectrum, m/e 305 (M⁺), 249, 154.

tert-Butyl 2-[2-(Methylthio)vinyl]-4-oxo-1-azetidineacetate (22). A freshly prepared 0.52 M solution of Br₂ in pentane (1 mL, 0.52 mmol) was added dropwise to a stirred solution of 21 (150 mg, 0.49 mmol) in 7 mL of Et_2O at 0 °C under N₂. After stirring for 10 min at 0 °C, cyclohexene (53 µL, 0.52 mmol) was added. After 5 min, NaH (57% in oil dispersion, 24 mg, 0.57 mmol) was added followed immediately by 6.5 mL of cold DMF. Stirring was continued for 3 h at 0 °C. The reaction mixture was poured into a stirred cold mixture of 1 M KH₂PO₄ (1.2 mL), Et₂O, and H₂O. After phase separation, the aqueous layer was saturated with NaCl and reextracted with ether. The combined organic layers were washed with brine, dried, filtered, and concentrated to provide 151 mg of crude 22. Preparative TLC (50% EtOAc/hexane) provided 97 mg of the E thioenolether 22 (77%)as an oil. A slightly less polar band yielded 15 mg of the Zthioenolether 22 (12%).

Data for (*E*)-22: IR (CCl₄) 5.68, 5.75 μ m; NMR (CDCl₃) δ 1.49 (s, *tert*-butyl), 2.06 (s, SCH₃), 2.74 (dd, $J_{gem} = 15$ Hz, $J_{trans} = 2$ Hz, H₃), 3.30 (dd, $J_{gem} = 15$ Hz, $J_{cis} = 4.5$ Hz, H₃), 3.80 (midpoint of 2 d, J = 18 Hz, CH₂CO₂-*t*-Bu), 4.36 (m, β -lactam methine proton), 5.32 (dd, J = 14 and 8 Hz, CH=CHS), 6.43 (d, J = 14 Hz, CH=CHS); mass spectrum, m/e 257 (M⁺), 201, 184, 158.

Data for (Z)-22: IR (CCl₄) 5.68, 5.75 μ m; NMR (CDCl₃) δ 1.48 (s, *tert*-butyl), 2.31 (s, SCH₃), 2.74 (dd, $J_{gem} = 14$ Hz, $J_{trans} = 2$ Hz, H₃), 3.33 (dd, $J_{gem} = 14$ Hz, $J_{cis} = 5$ Hz, H₃), 3.80 (midpoint of 2 d, J = 18 Hz, CH₂CO₂-*t*-butyl), 4.64 (m, β -lactam methine proton), 5.57 (dd appearing as a t, J = 9 Hz, CH=CHS), 6.29 (d, J = 9 Hz, CH=CHS); mass spectrum, m/e 257 (M⁺), 201, 184, 158.

Dibenzyl (E)-2-[2-(Methylthio)vinyl]-4-oxo-1-azetidinemalonate (24). Treatment of 23 (0.5 g, 1.06 mmol) in the exact manner previously described for the conversion of **21** to **22** provided upon workup (EtOAc being used rather than Et₂O as the extracting solvent) 0.5 g of crude **24**. Preparative TLC (30% acetone/hexane) provided 0.39 g of **24** (86%) as an oil: IR (CCl₄) 5.60, 5.71 μ m; NMR (CDCl₃) δ 2.13 (s, SCH₃), 2.75 (dd, $J_{gem} = 15$ Hz, $J_{trans} = 2.5$ Hz, H₃), 3.27 (dd, $J_{gem} = 15$ Hz, $J_{cis} = 5$ Hz, H₃), 4.50 (m, β -lactam methine proton), 5.13 and 5.17 (2 s, CH₂Ph's), 5.20 (s, CH(CO₂CH₂Ph)₂), 5.28 (partially buried dd, J = 14 and 10 Hz, CH=CHS), 6.26 (d, J = 14 Hz, CH=CHS), 7.28 (br s, Ph); mass spectrum, m/e 425 (M⁺), 397, 378, 334.

Dibenzyl 1-Bromo-2-(methylthio)carbapenam-3,3-dicarboxylate (25) and Dibenzyl 2-[1-Bromo-2-(methylthio)vinyl]-4-oxo-1-azetidinemalonate (26). A freshly prepared 0.81 M solution of Br₂ in pentane (1 mL, 0.81 mmol) was added dropwise to a stirred solution of 24 (325 mg, 0.765 mmol) in 17 mL of Et₂O at 0 °C under N₂. After 15 min at 0 °C, NaH (57% in oil dispersion, 44 mg, 1.05 mmol) was added, followed immediately by 8.2 mL of cold DMF. The reaction mixture was stirred for 1.5 h at room temperature and then poured into a stirred cold mixture of 1 M KH₂PO₄ (2.2 mL), EtOAc, and H₂O. Workup, as in the preparation of 24, provided 408 mg of crude material. Preparative TLC (30% acetone/hexane) revealed two major bands. Extraction of the less polar band (faintly observable under UV light) provided 258 mg of the desired bicyclic compound 25 (67%): IR (CCl₄) 5.59, 5.75 μm; NMR (CDCl₃) δ 2.16 (s, SCH₃), (67%). If (CCI_4) 5.55, 5.75 µm, NMR $(CDCI_3)$ 5.16 (s, SCII₃), 2.78 (dd, $J_{gem} = 14.5$ Hz, $J_{trans} = 2$ Hz, H_6), 3.33 (dd, $J_{gem} = 14.5$ Hz, $J_{cis} = 4.5$ Hz, H_6), 3.95 (d, J = 5.5 Hz, H_2), 4.11 (m, H_5), 4.63 (dd, J = 6.5 and 5.5 Hz, H_1), 5.16 (s, CH₂Ph), 5.22 (midpoint of 2 d, J = 12 Hz, CH₂Ph), 7.27 (m, Ph's); ¹³C NMR (CDCI₃) 186 (SCH₃), 41.8 (C₆), 52.7 (C₁), 59.3 (C₅), 63.9 (C₂), 68.1 and 68.8 (CO₂CH₂Ph's), 77.7 (C₃), 128.5, 128.7, 134.4, and 134.6 (aromatics), 165.6 and 165.9 (ester C=O's), 171.6 ppm (β-lactam C=O); mass spectrum, m/e 505 and 503 (M⁺), 424, 382.

Extraction of the second more polar band (intensely observable under UV light) provided 74 mg of a mixture of vinyl bromide 26 and a diastereomer of the bicyclic material 25. Treatment of the mixture with AgF in pyridine (in the manner subsequently described for the dehydrobromination of 25 to 28) provided a mixture of unchanged vinyl bromide 26 and the dehydrobrominated bicyclic material 28 now separable by preparative TLC (30% acetone/hexane). The more polar band provided 27 mg of 28 (identical with that prepared from the major diastereomer of 25 and described subsequently). The less polar band provided 28 mg of vinyl bromide 26 (7%) as an oil: IR (CCl₄) 5.61, 5.71 μ m; NMR (300 MHz, CDCl₃) δ 2.28 (s, SCH₃), 3.09 (dd, J_{gem} = 14.5 Hz, J_{trans} = 3 Hz, H₃), 3.21 (dd, J_{gem} = 14.5 Hz, J_{cis} = 5 Hz, H₃), 4.77 (dd, J_{trans} = 3 Hz, J_{cis} = 5 Hz, β -lactam methine proton), 5.17 (m, CH₂Ph's and CH(CO₂CH₂Ph)₂), 6.70 (s, CBr=CHS), 7.31 (m, Ph's); mass spectrum, m/e 505 and 503 (M⁺), 414, 412.

Mixture of Bromo Olefins 27. Treatment of 22 (90 mg, 0.35 mmol) in the exact manner previously described for the conversion of 24 to 25 provided upon workup 120 mg of crude 27. Preparative TLC (30% acetone/hexane) provided 108 mg of 27 (92%) as a mixture of three of the four possible bromo olefins: IR (CCl₄) 5.67, 5.77 µm; NMR (300 MHz, CDCl₃) δ 1.47 (*tert*-butyl), 2.38, 2.39, and 2.40 (SCH₃'s), 2.81, 2.82, and 2.99 (3 dd, for all $J_{gem} = 15$ Hz, $J_{trans} = 2$ Hz, H_3 's), 3.19, 3.32, and 3.36 (3 dd, for all $J_{gem} = 15$ Hz, $J_{cis} = 5$ Hz, H_3 's), 3.82, 3.83, and 3.83 (midpoints of three widely spaced pairs of d, for all J = 18 Hz, nonequivalent methylene protons of CH₂CO₂-*t*-butyl's), 4.57, 4.71, and 4.82 (3 m, β-lactam methine protons), 6.03 (d, J = 8 Hz, CH=CBrSCH₃), 6.29 (d, J = 9 Hz, CH=CBrSCH₃), 6.82 (s, CBr=CHSCH₃); mass spectrum m/e 337 and 335 (M⁺), 281, 279.

Dibenzyl 2-(Methylthio)carbapen-1-em-3,3-dicarboxylate (28). DBU Method. A solution of DBU (40 mg, 0.263 mmol) in 0.7 mL of Me₂SO was added to 25 (121 mg, 0.241 mmol) in 0.25 mL of Me₂SO at room temperature. The reaction mixture was stirred for 4 h under N₂ and then added to a cold mixture of 1 M KH₂PO₄ (0.48 mL), EtOAc, and H₂O. After phase separation, the aqueous layer was reextracted with EtOAc. The combined organic layers were washed with brine, dried, filtered, and concentrated to give 118 mg of crude 28. Preparative TLC (30% acetone/hexane) yielded 56 mg of 28 (55%) as an oil. Extraction of the less polar starting material band provided 20 mg of recovered 25. Data for 28: IR (CCl₄) 5.58, 5.70 µm; NMR (CDCl₃) δ 2.29 (s, SCH₃), 2.83 (dd, J_{gem} = 15 Hz, J_{trans} = 3 Hz, H₆), 3.34

(dd, $J_{gem} = 15$ Hz, $J_{cis} = 5$ Hz, H₆), 4.56 (m, H₅), 5.14 and 5.20 (2 s, CH₂Ph's), 5.71 (d, J = 1.5 Hz, H₁), 7.25 (br s, Ph's); mass spectrum, m/e 423 (M⁺), 395, 288, 246.

AgF/Pyridine Method. Silver fluoride (86 mg, 0.68 mmol) was added to a solution of 25 (256 mg, 0.509 mmol) in 20 mL of pyridine. After being stirred in the dark under N₂ for 1 h, the reaction mixture was partitioned between EtOAc and H₂O. After phase separation, the aqueous layer was reextracted with EtOAc (2×) followed by CHCl₃. Each organic layer was washed with brine. The combined organic layers were dried, filtered, and concentrated to give 220 mg of crude 28. Preparative TLC (30% acetone/hexane) provided 180 mg of 28 (84%) identical with the material prepared by the DBU-mediated dehydrobromination.

Benzyl 2-(Methylthio)carbapen-1-em-3-carboxylate (29). A solution of 28 (100 mg, 0.236 mmol) in 2.5 mL of collidine (sym) was added to LiI (45 mg, 0.336 mmol). The reaction mixture was stirred under N_2 for 30 min in an oil bath at 120–130 °C. After cooling to room temperature, the reaction mixture was transferred to a wide-mouth round-bottom flask with CH₂Cl₂ for concentration to 211 mg of an orange oil which smelled strongly of collidine. The oil was partitioned between 1 M KH₂PO₄ (1.8 mL), EtOAc, and H_2O . After phase separation, the aqueous layer was reextracted with EtOAc $(2\times)$. The combined organic layers were washed with brine, dried, filtered, and concentrated to give 72 mg of crude 29. Preparative TLC (30% acetone/hexane) provided 36 mg of 29 (53%) as an oil. Extraction of the more polar starting material band gave 20 mg of recovered 28. Data for 29: IR (CCl₄) 5.61, 5.72 μm; IR (CHCl₃) 5.65, 5.74 μm; NMR (CCl₄) δ 2.32 (s, SCH₃), 2.76 (dd, $J_{gem} = 14$ Hz, $J_{trans} = 2.5$ Hz, H₆), 3.37 (dd, $J_{gem} = 14$ Hz, $J_{cis} = 4.5$ Hz, H₆), 5.03 (dd, $J_{1,3} = 1.5$ Hz, $J_{3,5} = 3$ Hz, H₃), 5.14 (s, CH₂Ph), 5.66 (overlapping dd appearing as a t, $J_{1,3}$ = $J_{1,5}$ = 1.5 Hz, H_1), 7.33 (s, Ph); mass spectrum, m/e 289 (M⁺), 261, 154, 112; UV max (Diox) 245 nm.

Benzyl (±)-2-(Methylthio)carbapen-2-em-3-carboxylate (2). With stirring, DBU (9.5 μ L, 0.063 mmol) was added to a solution of 29 (16 mg, 0.055 mmol) in 0.2 mL of Me₂SO. The solution was stirred for 15 min at room temperature under N₂. After dilution with CHCl₃ to a total volume of 1 mL, the solution was chromatographed on two 1000 μ m silica gel GF plates (30% acetone/hexane). Two bands were faintly observable under UV light. The less polar band provided 4 mg of recovered starting material **29** (25%). The more polar product band gave 5 mg of oily **2**. Slurrying with CCl₄ caused solidification. The solid was slurried in Et₂O (ca. 0.5 mL). The pale yellow supernatant was removed, and a second Et₂O wash was performed, thus providing 4 mg of **2** (25%) as a white solid: mp 137 °C dec; IR (CHCl₃) 5.6, 5.90 μ m; NMR (300 MHz, CDCl₃) δ 2.36 (s, SCH₃), 2.94 (dd, J_{gem} = 16.5 Hz, J_{trans} = 3 Hz, H₆), 3.03 (dd, $J_{1,1}$ = 18 Hz, $J_{1,5}$ = 8.5 Hz, H₁), 3.25 (dd, $J_{1,1}$ = 18 Hz, $J_{1,5}$ = 9.5 Hz, H₁), 3.49 (dd, J_{gem} = 16.5 Hz, J_{cis} = 5 Hz, H₆), 4.22 (m, H₅), 5.30 (midpoint of 2 d, J = 12 Hz, nonequivalent methylene protons of CH₂Ph), 7.30–7.50 (m, Ph); mass spectrum, m/e 289 (M⁺), 247, 141; UV max (Diox) 316 nm (ϵ 11 100).

Acknowledgment. We wish to thank Mr. H. Flynn for obtaining the 300-MHz ¹H NMR spectra, Dr. A. W. Douglas and Mr. R. A. Reamer for recording and interpreting the ¹³C NMR spectra, Mr. H. Flynn and Mr. Jack Smith for obtaining the mass spectral data, Mr. J. P. Gilbert and his associates for elemental analyses, and Dr. C. H. Shunk for help in the preparation of intermediates.

Registry No. (±)-2, 72658-57-2; (±)-3, 65750-47-2; (±)-5, 72658-58-3; (±)-6, 72658-59-4; 7, 72672-36-7; (±)-8, 72672-37-8; (±)-9, 72672-38-9; 10, 72658-60-7; (±)-(E)-11, 67314-41-4; 12, 72658-61-8; 13, 72658-62-9; (±)-(E)-14, 72658-63-0; (±)-15, 72658-64-1; (±)-16, 72658-65-2; (±)-17, 72658-66-3; (±)-18 (R = t-Bu), 72658-67-4; (±)-18 (R = Bz), 72658-68-5; (±)-19a (R = t-Bu), 72658-69-6; (±)-19a (R = Bz), 72658-70-9; (±)-19b (R = t-Bu), 72658-71-0; (±)-19b (R = Bz), 72658-72-1; (±)-20, 72658-73-2; (±)-21, 72658-74-3; (±)-(E)-22, 72658-75-4; (±)-(Z)-22, 72658-76-5; (±)-23, 72658-77-6; (±)-(E)-24, 72658-78-7; 25, 72658-79-8; (±)-26, 72658-80-1; 27, isomer 1, 72658-81-2; 27, isomer 2, 72658-82-3; 27, isomer 3, 72658-83-4; (±)-28, 72658-84-5; 29, 72658-85-6; tert-butyl glyoxylate, 7633-32-1.

Thienamycin Total Synthesis. 3. Total Synthesis of (\pm) -Thienamycin and (\pm) -8-Epithienamycin

Susan M. Schmitt,* David B. R. Johnston, and B. G. Christensen

Merck Sharp & Dohme Research Laboratories, Rahway, New Jersey 07065

Received September 25, 1979

The completion of the total synthesis of (\pm) -8-epithienamycin and (\pm) -thienamycin from azetidinones **3a** and **3b** using the methodology developed for the synthesis of model compound 4 (see part 2) is described.

Thienamycin (1) is a broad-spectrum antibiotic¹ having a unique and synthetically challenging structure.² In part 1 of this series, the preparation of 4-(2-hydroxyethyl)-2azetidinone (2) and its 3-substituted analogues 3a and $3b^3$ was described. In part 2, we described model work which resulted in the preparation of the benzyl ester of (\pm) -2-(methylthio)carbapen-2-em-3-carboxylic acid (4) from 2.⁴ The chemistry of part 2 has now been adapted with minor

⁽⁴⁾ The numbering of the ring system adopted throughout this and the previous paper is based on assignment of the terms carbapenam, carbapen-1-em, and carbapen-2-em to structures a, b, and c, respectively. This nomenclature is analogous to the penam and cepham nomenclature currently employed in β -lactam chemistry.

0022-3263/80/1945-1142\$01.00/0 © 1980 American Chemical Society

⁽¹⁾ J. S. Kahan, F. M. Kahan, R. Goegelman, S. A. Currie, M. Jackson, E. O. Stapley, T. W. Miller, A. K. Miller, D. Hendlin, S. Mochales, S. Hernandez, H. B. Woodruff, and J. Birnbaum, J. Antibiot., **32**, 1 (1979), and references therein.

⁽²⁾ G. Albers-Schönberg, B. H. Arison, O. D. Hensens, J. Hirshfield, K. Hoogsteen, E. A. Kaczka, R. E. Rhodes, J. S. Kahan, F. M. Kahan, R. W. Ratcliffe, E. Walton, L. J. Ruswinkle, R. B. Morin, and B. G. Christensen, J. Am. Chem. Soc., 100, 6491 (1978).

⁽³⁾ PNB is equivalent to p-nitrobenzyl.